SUPPLEMENTARY MATERIAL FOR

Generalized Autoregressive Score Trees and Forests

Andrew J. Patton and Yasin Simsek This Version: February 29, 2024

This appendix contains two sections. Section S.1 presents additional details for the t-GAS copula model considered in Section 3.4. Section S.2 presents some additional tables and figures.

S.1 Derivation of the score function for the t-GAS copula

In this section we present the score function for the t-copula analysis discussed in Section 3. We refer to Creal et al. (2013) for the details of the univariate applications (the GARCH and t-GAS models).

S.1.1 Notation

We adopt the notation of Creal et al. (2011) for ease of comparability with that article. The Kronecker product is denoted by $A \otimes B$ for any matrices A and B. A_{\otimes} stands for $A \otimes A$. The function vec(A) vectorizes matrix A into a column vector, and vech(A) vectorizes just the lower triangle of A, which eliminates duplicates in the case that A is symmetric. The duplication matrix is implicitly defined as the solution to $\mathcal{D} \operatorname{vech}(A) = \operatorname{vec}(A)$. Finally, \mathbb{E}_{t-1} denotes the expectation conditional on the information available up to period t - 1.

S.1.2 The probability density function of t copula

We adopt Student's t copula specification in our empirical analysis and its probability density function is given by

$$c(\mathbf{u}_t; \Sigma_t, \nu) = \frac{\Gamma\left(\frac{\nu+2}{2}\right) \Gamma\left(\frac{\nu}{2}\right)}{\sqrt{|\Sigma_t|} \left[\Gamma\left(\frac{\nu+1}{2}\right)\right]^2} \left(1 + \frac{\mathbf{x}_t' \Sigma_t^{-1} \mathbf{x}_t}{\nu}\right)^{-\frac{\nu+2}{2}} \prod_{i=1}^2 \left(1 + \frac{x_{i,t}^2}{\nu}\right)^{\frac{\nu+1}{2}}$$
(12)

where $\mathbf{x}_t = [x_{1,t}, x_{2,t}] = [T_{\nu}^{-1}(u_{1,t}), T_{\nu}^{-1}(u_{2,t})]'$ obtained by applying the inverse of the univariate t distribution with ν degrees of freedom, $\Gamma(\cdot)$ is gamma function and Σ_t is 2-by-2 correlation matrix. We denote the off-diagonal element of Σ_t with ρ_t which is the variable of interest:

$$\Sigma_t = \begin{bmatrix} 1 & \rho_t \\ \rho_t & 1 \end{bmatrix}$$
(13)

S.1.3 The score and information matrix

We use inverse information matrix of the score function as a scaling factor in all applications. Given the complex structure of the Student's t copula, derivation of the information matrix requires tedious calculations, but Creal et al. (2011) provide a closed-form formula of both score and information matrix. Based on their results, we can write

$$\nabla_{t} = \frac{\partial \log c_{t}(y_{t}|\Sigma_{t};\nu)}{\partial f_{t}}
= \frac{1}{2} (\mathcal{D}\Psi_{t})' \Sigma_{t\otimes}^{-1} [w_{t}\mathbf{x}_{t\otimes} - \operatorname{vec}(\Sigma_{t})]
\mathcal{I}_{t|t-1} = \mathbb{E}_{t-1} [\nabla_{t}\nabla_{t}']
= \frac{1}{4} (\mathcal{D}\Psi_{t})' J_{t\otimes}' [gG - \operatorname{vec}(\mathbf{I})\operatorname{vec}(\mathbf{I})'] J_{t\otimes}\mathcal{D}\Psi_{t}$$
(14)

where $\Psi_t \equiv \frac{\partial \operatorname{vech}(\Sigma_t)}{\partial \rho_t}$, J_t is such that $\Sigma_t^{-1} = J'_t J_t$, $w_t \equiv \frac{\nu+2}{\nu-2+\mathbf{x}'_t \Sigma_t^{-1} \mathbf{x}_t}$, $g \equiv \frac{v+2}{v+4}$, and the explicit form of matrix G is

$$G = \begin{bmatrix} 3 & 0 & 0 & 1 \\ 0 & 1 & 1 & 0 \\ 0 & 1 & 1 & 0 \\ 1 & 0 & 0 & 3 \end{bmatrix}.$$
 (15)

We define the scaled score functions as $s_t = \mathcal{I}_{t|t-1}^{-1} \nabla_t$. As in Janus et al. (2014) we use a transformation to ensure $\rho_t \in (-1, 1)$, by setting $\rho_t = \frac{1 - \exp(-\tilde{\rho}_t)}{1 + \exp(-\tilde{\rho}_t)}$, where $\tilde{\rho}_t \in \mathbb{R}$. In order to obtain the scaled score function for $\tilde{\rho}_t$, we multiply the original scaled score with the derivative of the transformation function: $\tilde{s}_t = \frac{\partial \tilde{\rho}_t}{\partial \rho_t} s_t$. When we use the explicit form of each component in equation (14), we obtain the following expression for the scaled score of the transformation function:

$$s_t = \left(\frac{2}{1-\rho_t^2}\right) \left(\frac{1+\rho_t^2}{g+(2g-1)\rho_t^2}\right) \left(w_t(x_{1,t}x_{2,t}-\rho_t) - \frac{\rho_t}{1+\rho_t^2}(w_tx_{1,t}^2+w_tx_{2,t}^2-2)\right)$$
(16)

Noting that $(g, w_t) \to (1, 1)$ as $\nu \to \infty$, we thus also obtain the scaled score function for Gaussian copula:

$$s_t = \left(\frac{2}{1-\rho_t^2}\right) \left(x_{1,t}x_{2,t} - \rho_t - \frac{\rho_t}{1+\rho_t^2}(x_{1,t}^2 + x_{2,t}^2 - 2)\right).$$
(17)

S.2 Additional tables and figures

	Benchmark	DRF	Tiny Tree	Tree	Forest
Benchmark					
\mathbf{DRF}	-1.332				
Tiny Tree	-2.006	-0.789			
Tree	-5.277	-3.856	-5.594		
Forest	-3.652	-2.599	-0.871	3.154	
QLIKE	0.403	0.382	0.369	0.324	0.358

Table S.1: Out-of-sample performance of t-GAS models using QLIKE loss

Table S.2: Out-of-sample performance of GARCH models using -logL loss

	Benchmark	DRF	Tiny Tree	Tree	Forest
Benchmark					
DRF	-3.025				
Tiny Tree	-2.300	0.350			
Tree	-5.777	-2.356	-5.818		
Forest	-6.703	-2.392	-2.183	1.594	
-logL	1.205	1.177	1.182	1.148	1.162

Figure S.1: Parameter estimates as a function of T10Y state variable for t Copula forest-based GAS

Figure S.2: Parameter estimates as a function of T10Y3M state variable for t Copula forest-based GAS

Figure S.3: Parameter estimates as a function of VIX state variable for t Copula forest-based GAS

Figure S.4: The estimated ACD tree model. This figure depicts the tree structure for the ACD model. The tree's splits are based on SPX and T10Y, which refer to the S&P 500 return and 10 year bond return respectively.

Figure S.5: Parameter estimates as a function of VIX state variable for ACD forest-based

Figure S.6: Parameter estimates as a function of T10Y3M state variable for ACD forest-based

Figure S.7: Parameter estimates as a function of DURATION state variable for ACD forest-based

Figure S.8: Parameter estimates as a function of LIQUIDITY state variable for ACD forest-based

7